История развития естественных систем единиц измерения

При построении систем единиц физических величин давно наблюдалось стремление к выбору в качестве основных «естественных единиц». Эти единицы доступны на определенном уровне науки и техники, а их эталоны неуничтожимы. Если воспроизведение таких единиц будет достаточно точным, их стабильность во времени будет гарантирована.

При создании метрической системы («системы мер и весов», где под «мерами» понимали единицы длины, а под «весом» – единицы массы) за основу взяли длину окружности Земли. Метр был определен как 1/10000000 часть длины четверти Парижского меридиана, килограмм – как масса одного кубического дециметра воды при ее наивысшей плотности (температура воды 4оС). Земля и вода представлялись неуничтожимыми и стабильными. 10 декабря 1799 года во Франции ввели новую («метрическую») систему единиц. Тогда же была отчеканена посвященная этому событию медаль с надписью «На все времена, для всех народов» или, по другому переводу, – «Для всех времен и народов». Главным эталоном системы была платиновая концевая мера длины (длина 1 м).

Однако правильность исходного объекта, т.е. формы Земли, оставляла желать лучшего. Точность измерения длины исходного объекта была недостаточно высокой, в результате при повышении точности измерений следовало или менять размеры единиц или отказываться от их «естественного» происхождения. В метрической системе было принято решение отказаться от их «естественного» происхождения – за метр была принята длина платиновой концевой меры («метра архива»), а за килограмм – масса платиновой гири («килограмма архива»).

В физике неоднократно разрабатывались «естественные системы единиц», основанные на использовании основных единиц универсальных физических постоянных.

В небесной механике получила распространение система единиц, основанная на выборе коэффициента в законе всемирного тяготения (гравитационной постоянной) равным единице. В 1832 г. К.Ф.Гаусс предложил в качестве общего принципа выбора единиц опираться на три основные механические меры (длины, времени и массы) и сводить единицы всех других физических величин к трем основным механическим путем выбора в законах, в которых проявляется то или иное механическое действие, коэффициентов равными точно единице (абсолютная система мер).

В 1870 и 1873 гг. Дж.К.Максвелл предлагал две "универсальные системы единиц" (одна из которых была основана на постоянных c и G, а другая – на c и массе некоторой молекулы mo). Фактически эти системы единиц стали прообразом гравитационной и атомной естественных систем единиц.

В 1874 г. (опубликовано в 1880 г.) Дж. Стони впервые предложил полную естественную систему единиц, основанную целиком на фундаментальных постоянных c, G и e, а также рассчитал масштабы длины, времени и массы.

В 1899 г. М. Планк после обоснования закона теплового излучения Вина предложил естественную систему единиц, основанную на скорости света, гравитационной постоянной и двух универсальных постоянных a и b в законе теплового излучения. В дальнейшем, после обоснования нового закона теплового излучения (закона Планка), Планк вновь воспроизвел идею естественной системы единиц с учетом введенных им постоянных h и k в книге "Теория теплового излучения" (1906) (cGhk-система единиц). Планковские масштабы были переоткрыты в 1950-е гг. как границы применимости современных физических теорий.

Помимо этого предлагались и другие естественные системы единиц: электронная (c, e, me), атомная система Хартри (, e, me), квантово-релятивистская система (c,, me), квантово-электродинамическая система Штилле (c, h, e, mp).

Система Хартри нашла широкое применение в атомной физике, а квантово-релятивистская – в физике высоких энергий. Ряд ученых (П. Бриджмен, Д. Хартри) полагал невозможным применение систем единиц, основанных одновременно на трех постоянных c, h и e. Такой вывод был тесно связан с применением гауссовой системы единиц (выбор коэффициента в законе Кулона ke равным точно единице). На самом деле, если заранее не ограничивать единицы выбором k= 1, то никаких других ограничений на применение такого рода систем единиц не существует; более того, такие системы уже не раз предлагались метрологами, начиная с У. Штилле (1949). Применение систем единиц, основанных на постоянных с и e является не только возможным, но и исключительно продуктивным.

В экспериментальной физике длительное время продолжали использоваться системы единиц, основанные на практических эталонах. Это было связано с тем, что эталонирование физических величин на основе фундаментальных констант давало меньшую точность, чем на основе практических эталонов. Ситуация стала меняться с открытием квантовых эффектов – эффекта Джозефсона, квантового эффекта Холла и др.

К концу 1970 х годов выяснилось, что эталонирование длины является наиболее точным при использовании в качестве эталона светового отрезка. В 1983 г. был сделан первый шаг в переходе к квантовой метрологии – значение скорости света 299792458 м/с было выбрано точным. Это означает, что мерой скорости стала выступать скорость света, а длина отныне измеряется в световых отрезках.

Дальнейшее развитие квантовой метрологии связано с переходом к выбору точных значений других фундаментальных постоянных. Итогом развития квантовой метрологии станет переход к единой естественной системе единиц, однако для этого шага должна быть открыта и (или) приобрести фундаментальный статус еще одна постоянная, не являющаяся комбинацией других фундаментальных постоянных (размерности длины, энергии, массы и т.п.). Гравитационная постоянная G, имеющая по мнению ряда ученых такой же фундаментальный статус как c и h, пока не может претендовать на роль метрологической константы.